Accepted Papers
Oral presentations:
- Mroueh, Y. Towards a Statistical Theory of Learning to Learn In-context with Transformers
- Le, A., Chalvatzaki, G., Biess, A., Peters, J. Accelerating Motion Planning via Optimal Transport
- Das, A., Nagaraj D. Provably Fast Finite Particle Variants of SVGD via Virtual Particle Stochastic Approximation
Posters:
- Brekelmans, R., Neklyudov, K. On Schrödinger Bridge Matching and Expectation Maximization
- Hong, W., Kobzar, V., Ren, K. Fourier-Based Bounds for Wasserstein Distances and Their Implications in Computational Inversion
- Nietert, S., Goldfeld, Z., Shafieezadeh-Abadeh, S. Outlier-Robust Wasserstein DRO
- Zalles, A., Hung, K., Finneran, A., Beaudrot, L., Uribe, C. Network Regression with Wasserstein Distances
- Maurais, A., Marzouk Y. Adaptive Algorithms for Continuous-Time Transport: Homotopy-Driven Sampling and a New Interacting Particle System
- Le, T., Nguyen, T., Fukumizu, K. Optimal Transport for Measures with Noisy Tree Metric
- Singh, P., Vanschoren, J. Applications of Optimal Transport Distances in Unsupervised AutoML
- Min, Y., Gomes, C. Unsupervised Learning Permutations for TSP using Gumbel-Sinkhorn Operator
- Alfonso, J., Baptista, R., Bhakta, A., Gal, N., Hou, A., Lyubimova, V., Pocklington, D., Sajonz, J., Trigila, G., Tsai, R. A generative flow model for conditional sampling via optimal transport
- Polo, F., Yurochkin, M., Banerjee, M., Maity, S., Sun, Y. Estimating Fréchet bounds for validating programmatic weak supervision
- Neklyudov, K., Brekelmans, R., Tong, A., Atanackovic, L., Liu, Q., Makhzani, A. A Computational Framework for Solving Wasserstein Lagrangian Flows
- Kwegyir-Aggrey, K., Dai, J., Cooper, A., Dickerson, J., Hines, K., Venkatasubramanian, S. Repairing Regressors for Fair Binary Classification at Any Decision Threshold
- Akbari, S., Ganassali, L., Kiyavash, N. Causal Discovery via Monotone Triangular Transport Maps
- Assel, H., Vayer, T., Flamary, R., Courty, N. Optimal Transport with Adaptive Regularisation
- Mariella, N., Born, J., Akhriev, A., Tacchino, F., Zoufal, C., Koskin, E., Tavernelli, I., Woerner, S., Rapsomaniki, M., Zhuk, S. Quantum Theory and Application of Contextual Optimal Transport
- Viallard, P, Haddouche, M., Simsekli, U., Guedj, B. Learning via Wasserstein-Based High Probability Generalisation Bounds
- Chen, J., Nguyen, B., Soh, Y. Semidefinite Relaxations of the Gromov-Wasserstein Distance
- Agarwal, P., Raghvendra, S., Shirzadian, P., Yao, K. Fast and Accurate Cost-Scaling Algorithm for the Semi-Discrete Optimal Transport
- Zhu, J., Xu, K., Tannenbaum, A. Optimal transport for vector Gaussian mixture models
- Rioux, G., Goldfeld, Z., Kato, K. Semi-discrete Gromov-Wasserstein distances: Existence of Gromov-Monge Maps and Statistical Theory
- Rioux, G., Goldfeld, Z., Kato, K. Entropic Gromov-Wasserstein Distances: Stability and Algorithms
- Xu, C., Cheng, X., Xie, Y. Normalizing flow neural networks by JKO scheme
- Xu, C., Cheng, X., Xie, Y. Computing high-dimensional optimal transport by flow neural networks
- Ahn, K., Beirami, A., Sun, Z., Suresh, A. SpecTr++: Improved transport plans for speculative decoding of large language models
- Lu, Y., Qin, Y., Zhai, R., Shen, A., Chen, K., Wang, Z., Kolouri, S., Stepputtis, S., Campbell, J., Sycara, K. Characterizing Out-of-Distribution Error via Optimal Transport
- Assel, H., Vincent-Cuaz, C., Vayer, T., Flamary, R., Courty, N. Interpolating between Clustering and Dimensionality Reduction with Gromov-Wasserstein
- Baheri, A. Understanding Reward Ambiguity Through Optimal Transport Theory in Inverse Reinforcement Learning
- Tamir, E., Trapp, M., Solin, A. Data-Conditional Diffusion Bridges
- Liu, R., Du, Y., Bai, F., Lyu, J., Li, X. Zero-shot Cross-task Preference Alignment for Offline RL via Optimal Transport
- Zhang, Z., Goldfeld, Z., Mroueh, Y., Sriperumbudur, B. Duality and Sample Complexity for the Gromov-Wasserstein Distance
- Xiong, Z., Ding, Q., Zhang, X. SyMOT-Flow: Learning optimal transport flow for two arbitrary distributions with maximum mean discrepancy
- Liu, X., Bai, Y., Tran, H., Zhu, Z., Thorpe, M., Kolouri, S. PTLP: Partial Transport $L^p$ Distances
- Sun, L., Richtárik, P. Improved Stein Variational Gradient Descent with Importance Weights
- Serrurier, M., Mamalet, F., Fel, T., Béthune, L., Boissin, T. On the explainable properties of 1-Lipschitz Neural Networks: An Optimal Transport Perspective
- Yan, K. Schwing, A., Wang, Y. Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching
- Nguyen, K., Ho, N. Sliced Wasserstein Estimation with Control Variates